Fast, sensitive and accurate integration of single-cell data with Harmony (2024)

  • Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protocols 13, 599–604 (2018).

    Article CAS Google Scholar

  • Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

  • Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

  • Arazi, A. et al. The immune cell landscape in kidneys of lupus nephritis patients. Nat. Immunol. 20, 902–914 (2019).

    Article CAS Google Scholar

  • Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    Article CAS Google Scholar

  • Hicks, S. C., Townes, F. W., Teng, M. & Irizarry, R. A. Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics 19, 562–578 (2017).

    Article Google Scholar

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article CAS Google Scholar

  • Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).

    Article CAS Google Scholar

  • Hie, B. L., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 37, 685–691 (2018).

    Article CAS Google Scholar

  • Polanski, K. et al. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics https://doi.org/10.1093/bioinformatics/btz625 (2019).

  • Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article CAS Google Scholar

  • Li, B. et al. HCA Data Portal: census of immune cells (Human Cell Atlas, 2019).

  • Segerstolpe, A. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).

    Article CAS Google Scholar

  • Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3, 346–360 (2016).

  • Lawlor, N. et al. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res. 27, 208–222 (2017).

    Article CAS Google Scholar

  • Grun, D. et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 19, 266–277 (2016).

    Article CAS Google Scholar

  • Muraro, M. J. et al. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 3, 385–394 (2016).

  • Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article CAS Google Scholar

  • Gao, T. et al. Pdx1 maintains β cell identity and function by repressing an α cell program. Cell Metab. 19, 259–271 (2014).

    Article CAS Google Scholar

  • Jia, S. et al. Insm1 cooperates with neurod1 and foxa2 to maintain mature pancreatic β-cell function. EMBO J. 34, 1417–1433 (2015).

    Article CAS Google Scholar

  • Sachdeva, M. M. et al. Pdx1 (MODY4) regulates pancreatic beta cell susceptibility to ER stress. Proc. Natl Acad. Sci. USA 106, 19090–19095 (2009).

    Article Google Scholar

  • Katoh, M. C. et al. MafB is critical for glucagon production and secretion in mouse pancreatic α cells in vivo. Mol. Cell. Biol. 38, e00504–e00517 (2018).

    Article Google Scholar

  • Liu, J. et al. Islet-1 regulates arx transcription during pancreatic islet α-cell development. J. Biol. Chem. 286, 15352–15360 (2011).

    Article CAS Google Scholar

  • Akiyama, M. et al. X-box binding protein 1 is essential for insulin regulation of pancreatic α-cell function. Diabetes 62, 2439–2449 (2013).

    Article CAS Google Scholar

  • Burcelin, R., Knauf, C. & Cani, P. D. Pancreatic alpha-cell dysfunction in diabetes. Diabetes Metab. 34, S49–S55 (2008).

    Article CAS Google Scholar

  • Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).

    Article CAS Google Scholar

  • Moffitt, J. R.et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).

  • Moffitt, J. et al. Data from: Molecular, Spatial and Functional Single-cell Profiling of the Hypothalamic Preoptic Region (Dryad, Dataset, 2018); https://doi.org/10.5061/dryad.8t8s248

  • Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266 (2018).

    Article CAS Google Scholar

  • Close, J. et al. Satb1 is an activity-modulated transcription factor required for the terminal differentiation and connectivity of medial ganglionic eminence-derived cortical interneurons. J. Neurosci. 32, 17690–17705 (2012).

    Article CAS Google Scholar

  • Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article CAS Google Scholar

  • Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expressionstudies by surrogate variable analysis. PloS Genet. 3, e161 (2007).

    Article CAS Google Scholar

  • Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nature Protocols 7, 500–507 (2012).

    Article CAS Google Scholar

  • Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).

    Article CAS Google Scholar

  • Manno, G. L. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    Article CAS Google Scholar

  • Mao, Q., Wang, L., Goodison, S. & Sun, Y. Dimensionality reduction via graph structure learning. In Proc. 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2015, 765–774 (ACM, 2015).

  • Dhillon, I. S. & Modha, D. S. Concept decompositions for large sparse text data using clustering. Mach. Learn. 42, 143–175 (2001).

    Article Google Scholar

  • Jordan, M. I. & Jacobs, R. A. Hierarchical mixtures of experts and the EM algorithm. Neural Comput. 6, 181–214 (1994).

    Article Google Scholar

  • Buttner, M., Miao, Z., Wolf, F. A., Teichmann, S. A. & Theis, F. J. A test metric for assessing single-cell RNA-seq batch correction. Nat. Methods 16, 43–49 (2019).

    Article CAS Google Scholar

  • Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308 (2018).

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article CAS Google Scholar

  • McInnes, L. & Healy, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).

  • Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    Article CAS Google Scholar

  • Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with bioconductor. F1000 Res. 5, 2122 (2016).

    Google Scholar

  • Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008, P10008 (2008).

  • Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).

    Article Google Scholar

  • Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article CAS Google Scholar

  • The Gene Ontology Consortium. Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res. 45, D331–D338 (2017).

    Article CAS Google Scholar

  • Ashburner, M. et al. Gene ontology: tool for the unification of biology. the gene ontology consortium. Nat. Genet. 25, 25–29 (2000).

    Article CAS Google Scholar

  • Fast, sensitive and accurate integration of single-cell data with Harmony (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Dr. Pierre Goyette

    Last Updated:

    Views: 6083

    Rating: 5 / 5 (70 voted)

    Reviews: 93% of readers found this page helpful

    Author information

    Name: Dr. Pierre Goyette

    Birthday: 1998-01-29

    Address: Apt. 611 3357 Yong Plain, West Audra, IL 70053

    Phone: +5819954278378

    Job: Construction Director

    Hobby: Embroidery, Creative writing, Shopping, Driving, Stand-up comedy, Coffee roasting, Scrapbooking

    Introduction: My name is Dr. Pierre Goyette, I am a enchanting, powerful, jolly, rich, graceful, colorful, zany person who loves writing and wants to share my knowledge and understanding with you.